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Analysis of Separation of Multicomponent Mixtures
across Membranes in a Single Permeation Unit

RISHI BANSAL, VIPUL JAIN, and SHARAD K. GUPTA*
DEPARTMENT OF CHEMICAL ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY, DELHI

HAUZ KHAS, NEW DELHI 110016, INDIA

ABSTRACT

A method for the numerical simulation of separation of multicomponent gaseous
mixtures across membranes is developed. It is shown that the governing differen-
tial equations for the plug flow geometries (crossflow, cocurrent flow, and counter-
current flow) are identical in form and can be reduced to a single general equation.
The only difference lies in the manner the mole fraction of each component on
the permeate side depends on its feed side composition at each point along the
membrane. There are three important dimensionless factors, the pressure ratio,
the permeabilities relative to that of the most permeable component, and either
the stage cut or the dimensionless area, which describe the operation of the per-
meation unit. The method is equally amenable to cases for which the area is known
and for which the stage cut is known. The separation of a binary mixture of N,
and O, in all four flow geometries and of a mixture of H,, CH4, CO, and CO; in
full mixing are simulated by the methods of the present study. The results obtained
are in good agreement with the values in the literature. The method is repeated
for the simulation of separation of a mixture containing H», N>, O,, and CH, for
all four flow geometries.

INTRODUCTION
In the past few years, considerable progress has been made in various

aspects of membrane technology, particularly in the field of gas separa-
tion. This is the result of better understanding of the interrelationships

* To whom correspondence should be addressed.
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between the structure and properties of the membranes. Advances have
also been made in the design and fabrication of gas permeation units.

Current applications of membrane separation include removal of SO,
from flue gases, H, and CO separation from synthesis gases, separation
of product gas from reaction gases, and separation of hydrogen from a
gas refinery stream. In most of these applications the multicomponent
nature of the feed is evident. Most of the previous papers on gas separation
(1-8) considered binary gas mixtures. Moreover, in these studies the stage
cut was assumed known beforehand and then the permeate and retentate
concentrations, as well as the membrane area, were calculated. In many
applications such as the design of multistage permeation units, the area
of the membrane in a single permeation stage is often known and the
resulting stage cut and concentrations have to be computed.

There are some reports about multicomponent gas mixtures (3, 5), but
these either deal with a limited number of components, with perfect mix-
ing, or with special cases [such as a nonpermeable component along with
two permeable components (9)], which have been discussed for various
geometries. In Reference 3 the analysis of multicomponent gas separation
for the full mixing case was discussed for any number of components with
a known stage cut.

The present study is a theoretical analysis for multicomponent gas sepa-
ration with four different flow geometries:

1. Cocurrent

2. Countercurrent
3. Crossflow

4. Full mixing

A different solution for full mixing flow geometry is presented. For each
flow geometry, solutions are presented for the area with known stage cut
and vice versa. Numerical simulation is carried out to study the effect of
the various operating conditions, flow geometries, permeabilities, and
feed concentrations.

THEORY

The single permeation stage as shown in Fig. 1(a) is divided into two
parts by a membrane of constant permeabilities K;s, area A, width W,
and membrane thickness 3. The feed QFf enters the unit and is finally
divided into two streams: Q° leaving on the retentate side and QP on the
permeate side. The mole fractions in these streams are xf, x?, and yP,
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respectively. Hence

§ﬁ=1 0
> xf =1 (2)
i=1

> =1 (3)

Without the loss of generality, it is assumed that the permeabilities are
arranged in descending order, i.c.,

I{1 > K2 S e > Ki > Ki+1 > e > K"

The following assumptions have been made while carrying out the
analysis:

1. The permeability of each component is the same as that of the pure
species and is independent of pressure.

2. Steady state is assumed.

The membrane is of uniform thickness.

4. The total pressure on each side of the membrane is essentially con-
stant.

5. In the direction perpendicular to the membrane, there are no concen-
tration gradients.

6. In all cases other than full mixing, plug flow is assumed.

W

The overall mass balance can be written as
0 = 0° + 0 @
Similarly, the component balances can be written as
Q'xf = QPYP + Q°x? (5)
The stage cut is defined as

gr Q' - Q°
"o ©
Equations (4), (5), and (6) are applicable to all four flow geometries.
We now consider each flow geometry separately.

$
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FULL MIXING

This case is shown in Fig. 1(a). The streams on both sides of the mem-
brane are fully mixed, and no concentration gradients are present within
each section. A method of solution for this case has been given by Shindo
(3). However, this analysis is applicable only when the stage cut is known
beforehand. The alternate method presented here is able to handle cases
of known stage cut (but unknown area) as well as that of unknown stage
cut (but known area).

On the basis of a full mixing assumption, the following equations can
be obtained for each component present in the mixture.

oryr = &é(Phx"’ — Pyp) (7)
i 3 i H

Using Eqgs. (3) and (7), we obtain

KA
or = 5 (Pnx? = PyP) 8)
i=1
By combining Eqs. (4), (5), and (6), we obtain the following equation for
the stage cut:

x? — xt

¢ =" 9)

xp — yFP

Now, using Egs. (6), (7), (9), and rearranging, we obtain

oo (5]

= (10)
[(T) Py + Pl = &) + (& — ¢2)QP]

Thus x? has been obtained in terms of inlet feed concentrations (xf),
operating conditions, area, and stage cut. Of these parameters, only either
area or stage cut is unknown. Since

2 =1 2)
we may write

F(o,A) = 2 x~-1=0 an
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where x¢ is given by Eq. (10) subject to the condition that it lies between
0 and 1.

The value of either ¢ or A is known, so in Eq. (11) there is only a
single unknown, either & or A, which can be determined numerically.
The function F(), A) becomes an implicit function of the single variable.
Equation (11) will have a root in the interval between the limiting values
of the unknown variable. These limiting values can be calculated as shown
in Appendix 1. The interval is divided into a number of equally spaced
subintervals and searched for zero crossings of the function F(db, A); a
pair of bracketing values is found (11). In this pair the function changes
sign. But in doing so a problem may be encountered: During the evaluation
of F(d, A), the values of xfs calculated for certain values of the unknown
variable by using Eq. (10) may either exceed unity or be less than 0.
These values of the unknown variable must be carefully discarded during
simulation.

CROSSFLOW

This case is shown in Fig. 1(b). In this flow geometry the stream on
the permeate side flows perpendicular to the membrane and away from
it. On the retentate side the gas stream flows parallel to the membrane
and away from the feed point. No mixing takes place on either side of
the membrane. Previous work in this case deals primarily with binary
mixtures.

By considering the differential area element dA, the following mass
balance equations can be easily written:

dg" = —dq' (12)
d(q"x;)) = —yidq' (13)
and
dA
)’idql = [_S‘]Ki(Phxi — Py (14)

Since 2Zx; = 1 and 2y; = 1, we may use Egs. (12), (13), and (14) to
obtain

K;
EZ — _24— = Z {—8- (PhXi - Plyl)} (]5)
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Also
d(g"x;) |, dx; dg"

da T qa T X (16)

Now, using Egs. (13), (14), and (15), Eq. (16) simplifies to

o K,' Ki
{xiZ Y (Pnx; — Pl)’j)] iy (Pnx; — Piy)
dx,‘ Jj=1

dxi _ ; a7

dA q

When there is no gas into the differential volume element on the per-
meate side parallel to the membrane, then the permeate mole fractions
y;s are functions only of feed side mole fractions, which can be evaluated
as shown in Appendix 2. Thus

= f(xlv X2y X3y o v v s Xns I)Ef({xl}s l) (18)
Using Eq. (18), Eqgs. (15) and (17) can be rewritten as
d h
= S { (Prx; — Pif({xi}, i)} (19)
i=1
and
" K . K; .
J [ > g(Phx, Pif({x:}, z))] = 5 Paxilf(xit, D)
X; . Jj=1
- 7 (20)
Equation (20) holds for each component. Thus with Eq. (19) we have
(n + 1) coupled differential equations in (n + 1) variables, and the initial
conditions are

inA:O = x} and qh|A=0 =0

e., the mole fractions and flow rate at the feed point on the retentate
side are the same as those for the feed itself.

This is an initial value problem which can be solved by any numerical
scheme such as the Runge Kutta method.

When the area is known, it is divided into an adequate number of steps
and integration is carried out to obtain the value of Q°, and x?s, yPs, and
¢ can be obtained by using Egs. (4), (5), and (6), respectively.

When ¢ is known, a suitable step area is chosen and the equations are
integrated until g" is equal to Q°. The value of area obtained is the required
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membrane area. From the xfs thus obtained, yPs can be calculated using
Eq. (5).

COCURRENT

This case is shown schematically in Fig. 1(c). The gas streams on both
sides of the membrane flow parallel to it and in the same direction. This
case has been discussed in detail for binary mixtures (1, 6, 7). Pan and
Habgood (9) extended it to include a nonpermeable component along with
two permeable components. The present study discusses the case for any
number of components.

Considering the differential area element dA, the following equations
can be obtained:

O'=4¢"+ ¢ @2n

Ot = g'x; + ¢'y; 22)

dg" = —dq' (23)

d(q"x;) = —d(q'y;) (24)

dA .
d(qui) = [?:l Ki(PnX; — Py (25)
d hx,‘ K,-

. (. 26)

Summing over the components from Eq. (26), the following equation
can be easily obtained.

d h n Ki
w2 [g (Prx; = Ply.-)] @7
i=1
Using Eqgs. (16), (25), and (26), the following equation is obtained for
X;S.

" K,‘ Ki
i, [x,-z g(Phxj - Plyj)] -3 (Prx; — Piy))

J=1

dA pe (28)

Now, from Eqgs. (21) and (22) we have

O - g

; , f;é h
Yy Qf__qh Q q
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When Qf = ¢", then ¢' = 0, and the condition for application of Eq.
(18) is satisfied and may be used for determining y;s. Thus

Qfxnf - q"m
yi = Qf_qh ° Qf;éqh

fxi, X2, X3, o ooy X0, D) = fAx}, D), QF = ¢b

(29)

Equations (27) and (28) along with Relations (29) form a set of (n + 1)
coupled differential equations. The initial conditions for the differential
equations are

Xia—o = and g4 = OF

These equations can be integrated from A = 0 to A = area for the case
of known area. For known ¢ the integration is carried out until the desired
flow rates are obtained. Once xPs are known, yPs can be found from Eq.

5).
COUNTERCURRENT

This case is shown schematically in Fig. 1(d). Except for the fact that
gas streams flow in opposite directions, the case is similar to the cocurrent
case. The literature for this case parallels that for the cocurrent case (1,
6, 7). The mass balance equations for this flow geometry are given below.

¢ -4 =0 - Qr=0Q° (30)
g"x; — q'y: = Q'xf — QPyP = Q°x? (31)
dg® = dg' 32)
d(g"x;) = d(q'y) (33)

d(q'x; K;
) o X, — Py (34)

From Egs. (33) and (34) we have

dg" = [ K;

&=-= [gu’hxi - Ply,-)] 39)
i=1

and following the method for the cocurrent case, we have

= K; K;
dx, [x,-Z _S"(Phxj - Plyj)] -3 (Prhxi — Py

Jj=1

A= 7 (36)
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where the y;s are given by

h f,.f
q'xi + Q% — Q'xi
yi=1{ " +Q°-0" "~ g" + Q"= Q'

f(x]ax2a X3 ..., Xn, l) = f({xi}’ l)’ qh + QP = Qf

(37)

Here QP and yPs are unknown and can be obtained only after the results
of integration are known. The (n + 1) differential equations can be solved
by using the shooting method to adjust for the values of unknowns at the
feed point.

However, it is convenient to shift the origin of the problem to the exit
of retentate. Equation (37) can be reframed in the form

qhx,- - QOX? °
y={ g -0 97¢ (38)
f({xi}a l)a qh = QO

Equations (35) and (36) together with Relations (38) constitute a bound-
ary value problem. This is solved from right to left with the value of the
area arbitrarily assigned zero at the beginning, and after integration the
sign of the area obtained is reversed.

The initial guesses are now made at the exit point and the problem
solved as an initial value problem. The values resulting at the feed point
will not in general match those given in the problem. The shooting method
(11) is used to adjust each initial guess to its correct value. In this method
the value of each guess is adjusted by observing the effect it produces on
the final match.

For the case of unknown o, initial guesses for the values of x{s have
to be made and refined, while for the case of known area, guesses for Q°
have also to be made. In the absence of other information, the values
obtained for the cocurrent case form a reasonable guess.

Values of yPs are calculated by the method identical to that used in the
cocurrent case.

DIMENSIONLESS ANALYSIS

In spite of the considerable differences in the flow geometries, there
is an underlying mathematical similarity among the cases of crossflow,
cocurrent flow, and countercurrent flow. It can be clearly seen that Egs.
(19) and (20), (27) and (28), and (35) and (36), which are the governing
differential equations for the crossflow, cocurrent flow, and countercur-
rent flow cases, respectively, are identical in form, i.e.,
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dqh n K,‘
a = —ig:] l:g(Phxi - Plyl):l (19’ 27’ 35)
& K,‘ Ki
dx [x{f=1 _B‘(Phxj - Plyj)] = 3 Puxi = Py)
A = pe (20, 28, 36)
Introducing the dimensionless quantities
Pr = P]/Ph (39)
Yi = Ki/K, (40)
q" = g"Qf (41)
— AK, P
A== (42)

30°
where +; is the ideal separation factor of the ith component with respect
to the most permeable component, g" is the dimensionless flow rate, and

A is the dimensionless area. Governing equations in terms of these dimen-
sionless variables become

19 _ é [y:( P
da =~ bvln ry:)] (43)
x| 2 v(x — Pry,-)] — vilxi — Pry;)

by _ = 44)

dA - a—h (

The boundary conditions for these equations are

xilioo = xf (45)
Fla-o0 = 1 (46)

The solutions for these three cases differ only inasmuch as the functional
relationship of y; with x; is different. In terms of dimensionless quantities,
these relationship can be expressed as:

1. Crossflow:

vi = f(x1, X2, . . ., Xn, Pr) = f({x;}, Pr) (see Appendix 2) (47)

2. Cocurrent flow:

xf — g'x;
=115 @7

Ffdx}, Pr), =1

(48)
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3. Countercurrent flow:
g"xi + dyP — xf

yi = " +d -1
f{x:}, Pr), g =1-9¢

(49)

When Pr = 0, then the governing equations become independent of y;
and hence reduce to the same mathematical form. Therefore the permeate
side flow pattern ceases to have any effect on the solution.

For the full mixing case the basic Eqs. (10) and (11) can be reduced to

_ x[b? + APry;] _
[YA($ + Pr(1 — &) + (1 — $)¢°]

(50

X7

F$,A) = 2 x¥ - 1=0 (1)
i=1

It can be seen from Eqgs. (43) to (51) that the achievable degree of
separation for a multicomponent gas mixture in a single permeation stage
for a given stage cut depends only on the ideal separation factors v;s, the
pressure ratio Pr, and the choice of the flow pattern. This result was
reported for the binary case by Walawender and Stern (7).

On the other hand, the membrane area requirement is affected by
changes in 3, Py, K;, or Qf, even when v;s, Pr, and the flow pattern are
the same. However, the dimensionless area A is affected only by changes
in vy;s, Pr, or the flow pattern.

RESULTS AND DISCUSSION

The separation of air (binary mixture) in a single-stage permeation unit,
first discussed by Walawender and Stern (7), was numerically simulated
for all four flow geometries by methods discussed in the present study.
For ease of comparison, the operating conditions and the permeabilities
were the same as taken by them (Table 1). The results are shown in Figs.
2 and 3, and they are in excellent agreement with the previous results.

Separation of the multicomponent gas mixture (Table 2), simulated by
Shindo et al. (3) in their study for the full mixing case, was simulated by
the alternative method presented here. The results were identical, as can
be seen from Fig. 4.

Numerical simulation for the separation of a multicomponent gas mix-
ture (Table 3) through a PVTM membrane was carried out for various flow
geometries and operating conditions (expressed in terms of dimensionless
variables). The effects of varying 1) the stage cut for a constant pressure
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TABLE 1
Operating Parameters for Separation of Air, Taken from
Walawender and Stern (7)

Py 380 cmHg

P 76 cmHg

s cm*(STP)-cm
s-cm?-cmHg

0-° cm?*(STP)-cm

K, (oxygen) 5 x 10°

K> (nitrogen) S x 1 5
s-cm”*-cmHg

of 1 X 10°cm¥/s

xi 0.209

xb 0.791

3 2.54 x 107*cm

0.6

0.5

Permeate

0.4 F
o~
a .
)_O A Fully mixed
0.3 F B: Cross flow
° C 1 Cocurrent
D : Counter current

0.1

0 1 1 ] 1
0.1 0.2 0.3 0.4 0.5 06

Stage Cut, ¢

FIG. 2 Variation of outlet mole fraction with respect to the stage cut for a binary mixture
of oxygen and nitrogen.
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7x108

Area

Membrane

7x ‘IO7 1 1 1 1
01 0.2 03 0.4 05 0-6

Stage cut

FIG. 3 Variation of membrane area required with respect to the stage cut for a binary
mixture of oxygen and nitrogen.

ratio (Figs. 5 and 6), 2) the pressure ratio for a constant value of stage
cut (Figs. 7 and 8), and 3) the pressure ratio for a constant area (Figs. 9
and 10) were studied.

For a constant value of Pr (50/380 = 0.132), the stage cut was varied and
its effect on the area requirement as well as on the outlet concentrations on

TABLE 2
Operating Parameters for Separation of a Multicomponent Mixture, Taken from Shindo
et al. (3)
Permeability [ ‘gm()‘ ] Mole fraction
Sample Gas s'm-Pa at the inlet
1 Hydrogen 71.4 0.02
2 Methane 27.1 0.40
3 Carbon monoxide 20.6 0.10
4 Carbon dioxide 18.5 0.48
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0.5
METHANE

2 04 CARBON_Dioxipe

S

(5]

° o03Ff

w

-

2 o2

*E o1 CARBON MONOXIDE

@

E HYDROGEN __

o 0 1 ' ! o

0 0.2 0.4 0.6 0.8 1.0

(1=

FIG. 4 Variation of outlet mole fractions on permeate side with respect to (1 — ¥) for the
multicomponent gas mixture containing hydrogen, methane, carbon monoxide and carbon
dioxide for full mixing flow geometry.

the permeate and the retentate side were observed. For low values of
stage cut, all the flow geometries indicated similar results. The area re-
quirement for full mixing flow geometry was the largest. The order of the
area requirements was found to be

Full mixing flow > Cocurrent flow > Crossflow > Countercurrent flow

The area requirements (Fig. 6) for cocurrent flow countercurrent flow,
and crossflow geometries, i.e., the plug flow geometries, were closer to
each other than to the full mixing flow geometry. At higher stage cuts
the full mixing flow case was distinctly inferior in terms of both lower
separations and higher area requirements.

TABLE 3
Operating Parameters for Separation of a Multicomponent Mixture, Permeabilities Taken
from Plate et al. (10)

Permeability x 107 [——CM"——] Mole fraction
Sample Gas cm™s-cmkg at the inlet
1 Hydrogen 0.2 0.10
2 Nitrogen 0.1t 0.23
3 Oxygen 0.044 0.40
4 Methane 0.013 0.27
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2.0
A i Fully mixed
B : Cross flow A
< C tCocurrent C
o 15F
b D : Counter current 8 o
<
@
[=4
o
a
E ok
=
w
w
@
c
2
w
$ 05
E
o
0 ! L t
0.05 0.15 0.25 035

$

FIG. 6 Variation of dimensionless membrane area with respect to the stage cut for a con-
stant pressure ratio (Pr = 50/380) and for various flow geometries.

The most permeable component (hydrogen) was always enriched. There
was a distinct difference (Fig. 5a) in the outlet hydrogen mole fractions
for different flow geometries. The permeate side outlet mole fractions
varied in the order

Countercurrent flow > Crossflow > Cocurrent flow > Full mixing flow

The mole fractions for nitrogen, the second most permeable component,
also behaved in a similar manner (Fig. Sb) except for the fact that its
enrichment was less. However, this result cannot be generalized to all
systems. Argon (Fig. 5¢) showed no general trends and was enriched or
depleted depending upon the operating conditions. Methane, the least
permeable component, was always depleted (Fig. 5d). The mole fractions
on the permeate side outlet varied in the order

Full mixing flow > Cocurrent flow > Crossflow > Countercurrent flow

The following observations were made on keeping the stage cut constant
at ¢ = 0.4 and varying the Pr.
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: Fully mixed

Dimensionless Membrane Area, A

w
T

A

B : Cross flow
C : Cocurrent
D

+ Counter current

N

1 1 1 L
0 01 02 0.3 0-4

Pr

FIG. 8 Variation of dimensionless membrane area with respect to the pressure ratio for a
constant stage cut (¢ = 0.4) and for various flow geometries.

As seen in Figs. 7 and 8 for the limiting case when Pr — 0, all three
plug flow geometries gave identical results for both outlet compositions
and area requirements. However, this was not true for higher values of
Pr. At any value of Pr the area requirements (Fig. 8) were again in the
order

Full mixing flow > Cocurrent flow > Crossflow > Countercurrent flow

At low values of Pr the full mixing flow case gave distinctly different
results, but at higher values became similar to crossflow. It is not clear
if this result can be generalized. The variation of mole fractions of individ-
ual gases for constant ¢ (Fig. 7) were similar to the case of constant Pr.

The effect of variation of Pr when the area is constant (A = 1.824)
showed (Fig. 10) that the stage cut for different flow geometries were in
the order

Countercurrent flow > Crossflow > Cocurrent flow > Full mixing flow
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0.50

$

Stage cut,

020 1 1 ! 1 1 1 "
0 005 0.10 015 0.20 025 0.30 0395 0.40

Pe

FIG. 10 Variation of dimensionless membrane area with respect to the pressure ratio for
a constant dimensionless area (A = 1.824) and for various flow geometries: A = fully mixed,
B = crossflow, C = cocurrent, D = countercurrent.

The variations in mole fractions on varying Pr showed (Fig. 9) the same
trends as observed in the case when the stage cut was constant.

CONCLUSIONS

Given the inlet feed conditions, the operating conditions, the flow ge-
ometry, the outlet mole fractions, and the flow rates can be predicted by
the use of the numerical simulation techniques discussed in the present
study. The value of either the membrane area or the stage cut must be
known, and given one, the other can be calculated.

The important conclusions which can be derived from the present study
are:

1. The complete set of operating conditions can be represented through
the dimensionless variables Pr and v;s along with either & or A (which-
ever is known) and the flow geometry.

2. For all the flow geometries the most permeable component is always
enriched in the permeate stream and the least permeable component
is always depleted. The intermediate components ({ = 2, 3, . . .,
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n — 1) may be enriched or depleted depending upon the operating
conditions.
3. The efficiency of separation varies in the order

Countercurrent flow = Crossflow = Cocurrent flow = Full mixing flow

However, when Pr— 0, the plug flow geometries tend to become identical.
In other words, at very low values of Pr their outlet compositions and
flow rates converge to the same value.

4. At higher values of Pr the efficiency of separation is reduced and the
outlet compositions for various flow geometries become nearly the
same,

APPENDIX 1

Limiting Values of Stage Cut and Area in Full Mixing Case

In multicomponent gas separation the most permeable component is
always enriched (3), i.e.,

y§ > x$ (Al-1)
while the least permeable component (i = n) is always depleted,
yh < xn (Al1-2)

Hence, for the most permeable component in the full mixing case:
KA
Qfbyt = ‘;;— (Prxy — PiyP) (A1-3)

and from Egs. (Al-1) and (A1-3):
KA 1

30" > Py, — P (Al-4)
For the least permeable component,
K, A
Qfbyh = —5— (Puxfy — Piyh) (A1-5)
and from Egs. (A1-2) and (A1-5) we get
K, A 1
(A1-6)

360" ~ Pn - P,

For the case of known stage cut from Egs. (A1-3) and (A1-6), we obtain
the limits on A as
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e 360" K,
K@ - P) A K@ - PK,

or in the dimensionless form
¢ — ¢ K,
i~ ~A<T-mk,

Similarly, for the case of known area we have

&Kl(Ph ~ P)A K(P, — P)A

Kl 8Qf < d) < SQf

which in dimensionless form can be written as
K, - —
?A(l — Pr) < ¢ < A(1 — Pr)
1

Moreover, for the steady state

0<od<<i1

2913

(A1-7)

(A1-8)

(A1-9)

(A1-10)

(Al-11)

Equations (A1-9) and (A1-10) along with Eq. (A1-11) constitute the limits

within which ¢ can vary.

APPENDIX 2

Method of Calculation for a Differential Volume Element
with No inflow Paraliel to Membrane on Permeate Side

When there is no gas flow into the differential volume element on the
permeate side parallel to the membrane, y;s can be evaluated for the given

set of x;s by the following method.
Applying Eq. (14) for ith and jth component:

dq' K,

yigg = 5 (Pt — Piyi)
dq K;

yj% =5 (Prx; — Piy)

Also from Eq. (15):

dql z [K, :l
e < (Phx; — Piy)
dA E, 3 P :

Dividing Eq. (A2-2) by Eq. (A2-1) and using Eq. (39):

Yi _ K;(x; — Pry;)
yi  Kdx; — Pry)

(A2-1)

(A2-2)

(A2-3)

(A2-4)
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_ X K;
Vi = K;Pry; + Ki(x; — Pry) (A2-5)
Using Eqs. (A2-1) and (A2-3):
Ki i P i
yi = i = Pov) (A2-6)
Z Kj(xj - Pryj)
Jj=1
From Eqs. (A2-5) and (A2-6):
Ki(x; — Pry;
Vi =— o Pry ) - (A2-7)
YR
K lx —
j§1 ! (xj KPry; + Ki(x; — Pry,-))
Now, using Eq. (40), Eq. (A2-7) becomes
Ay ™ P i
i =— vilx Pry ) (A2-8)
_ LYiXj
,§=: v (xj vPry: + vilxi — Pryi))

Equation (A2-7) can symbolically be represented as
yi = g{x:}, {K:}, Pr, y) (A2-9)

Since {x;}, {K:}, and Pr are known, Eq. (A2-9) contains only one un-
known, y;.

Consider the most permeable component (i = 1). It is known that y;
> x; and y, < 1, so Eq. (A2-8) can be numerically solved between these
limits to the desired level of accuracy by the method identical to that used
for solving Eq. (11) to obtain the value of y;.

By using Eq. (A2-5), {y;} can be computed. In other words, y; can be
obtained if the numerical values of process variables and retentate side
mole fractions are known, i.e.,

yi = f({xi}, Pr) (A2-10)
NOMENCLATURE
n number of components
A area
K; permeability of the ith component
Py total pressure on the high pressure side

P, total pressure on the permeate side
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Pr pressure ratio P/Py

o feed flow rate

Q° reject flow rate

or permeate flow rate

w width of the membrane

A dimensionless area

q" flow rate at any point on the high pressure side

q flow rate at any point on the low pressure side

gt dimensionless flow rate at any point on the high pressure side

xf mole fraction of the ith component in feed

xP mole fraction of the ith component in reject.

p mole fraction of the ith component in permeate

X; variable mole fraction of ith component on the high pressure
side at any point

Vi variable mole fraction of the ith component on low pressure
side at any point

Greek

o) stage cut

) thickness

Yi permeability ratio with respect to the most permeable com-
ponent

{} the set of values for all components, e.g., {x;}, {¥:}, etc.

Subscripts

i,j, k i, j, and kth component

h high

1 low

Superscripts

f feed

o outlet on reject side

p permeate
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